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Mathematical Techniques for Paleocurrent Analysis: 
Treatment of Directional Data 1 

J. S. Rao 2 and Supriya Sengupta 3 

Statistical procedures for (1) sampling, (2) testhlg the existence of  a preferred direction, and 
(3) testing homogeneity of  two-dimensional directional data, which have been developed by the 
attthors for paleocurrent studies, are presented. It is well known that conventional methods 
of  statistical analysis are not applicable to directional data (e.g., crossbedding and ripple-mark 
directions, grain lineations, etc.) which are "circularly distributed" on a compass dial. A 
sampling technique for directional data has been developed using the circular measures of dis- 
persion and approximate A NO VA of G. S. Watson. On the basis of  a pilot survey, it is possible 
to compute the minimum sample size required for estimating, with a desired precision, the 
mean paleocurrent direction of  a formation. The optimum allocation of  sample size between 
and within outcrops also can be accomplished at a minimum cost. The procedure described for 
testing uniformity (or lack of  preferred direction) is based on the arc lengths made by successive 
sample pohffs and is simple to use i f  the sample size is moderate. A table of  critical points and 
a numerical example are given after a description of  the test procedure. Finally, the procedures 
for testing the homogeneity of  directional data from several geological formations are de- 
scribed by (1) tests for equality of  the resultant directions (polar vectors) and (2) tests for 
equality of  dispersions. With these tests it is possible to determine whether the paleocurrent 
directions from different geological formations belong to significantly different populations. 
KEY WORDS: directional data analysis, new statistical tests, sampling, statistics, orienta- 
tion data, paleocurrent analysis, sedimentology. 

I N T R O D U C T I O N  

The two wel l -known methods  for  the de te rmina t ion  o f  pa leocurrent  are (1) 
measurement  o f  the direct ional  or  vectorial  propert ies  of  the sediment  and (2) 
mapp ing  of  the scalar propert ies  which exhibit  a systematic var ia t ion in the 
direct ion o f  sediment  t ransport .  This  paper  is concerned with the techniques 
o f  handl ing  the direct ional  da ta  only. Fol lowing is a list o f  the direct ional  
propert ies  o f  sediments which provide  useful clues to paleocurrents  (Pett i john, 

1962): 
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Planar structures 
Crossbedding of different types and different inclinations 

Linear structures 
Striation and groove casts 
Flute casts 
Grain lineation 
Fossil lineation 
Parting lineation 
Ripple marks 
Rib-and-furrow 

Complex structures 
Convolute bedding 

All the directional properties listed can be treated as vectors because they 
have direction as well as magnitude. Direction of linear structures is given by 
the attitude or orientation of the property concerned. With planar elements as 
crossbedding, direction is given in three dimensions by the azimuth and 
inclination of the foreset. Vector magnitude, for planar as well as linear 
features, can be determined arbitrarily by assigning unit weight to each obser- 
vation (Steinmetz, 1962). 

The importance of these properties as clues to paleocurrents is known. 
However, in using one or more of these vectorial properties for paleocurrent 
determination on a regional scale, one is faced with some procedural problems 
relating to the collection, summarization, and interpretation of data. Efficient 
handling of these problems requires statistical methods of analysis. Some 
problems have been discussed by Pettijohn (1962, p. 1448-1490). 

Some graphic as well as mathematical methods for sampling and sum- 
marization of data were studied as early as 1938 by Reiche. A comprehensive 
review of the early works is given by Pettijohn (1962) and Potter and Pettijohn 
(1963). These include, among others, the pioneering efforts of Olson and 
Potter (1954) and Raup and Miesch (1957). 

It must be emphasized here that vectorial data similar to those listed, 
which are spread circularly on a compass dial, pose special statistical prob- 
lems. Although the directions can be measured as angles with respect to some 
arbitrary origin, the arithmetic mean of these values fails to provide a 
representative measure of the mean direction, and the usual standard devia- 
tion of measurements cannot be applied as a measure of dispersion for such 
data. Under some special conditions where the spread of the observations on 
the circumference is restricted, the circle may be cut open at the other end to 
get a line, and the circular distribution may satisfactorily be approximated 
by a linear normal distribution [e.g., Agterberg and Briggs (1963) claim this 
can be done if the angular data does not exceed 57 ~ on either side of the 
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mean vector]. We do not know how good artificial linearization is, and the 
field data in most practical situations does exceed the limits. 

The inadequacy of conventional statistical measures (arithmetic mean, 
standard deviation, etc.) in the analysis of circularly distributed vectorial 
data (also called directional data or orientation data) having an arbitrary 
point of origin, was outlined by Jizba in 1953 and Chayes in 1954. The 
problem of development of adequate statistical techniques for directional 
data received the enthusiastic attention of several workers since then (Pincus, 
1956; Curray, 1956; Durand and Greenwood, 1958; Watson, 1956, 1966; 
Watson and Irving, 1957). A general review of the important publications on 
this subject is given in Miller and Kahn (1962). Unfortunately, however, in 
spite of these pioneering efforts inappropriate statistical measures have been 
or are being utilized. Although recognizing the inadequacy of arithmetic 
means and variances, some authors have continued to use conventional 
analysis of variance, whereas others have used conventional statistical tests, 
such as Student's t, as a test of homogeneity of directional data. Seemingly, 
statisticians have failed to communicate their findings in a manner readily 
understandable by geologists. 

Attempts have been made by the authors during the last few years to 
critically examine the available statistical techniques for sampling as well as 
for testing the homogeneity of circularly distributed directional data. In 
some situations, where the conventional techniques have proved inadequate, 
efforts have been made to develop new procedures for the treatment of 
directional data. The purpose of this paper is to give an account of these 
statistical techniques in a form readily usable by geologists. Although illus- 
trated with the help of the crossbedding data, these techniques are univer- 
sally applicable to any form of directional (vectorial) data. 

SAMPLING OF DATA 

In a formation with a large number of outcrops, where each outcrop contains 
a profuse amount of directional features of a particular type (crossbedding, 
ripple marks, grain lineation, or any other), one is faced with the problem of 
the number of measurements necessary to estimate the mean direction. 
Clearly the answer will depend on several factors, for instance, the precision 
with which one wants to estimate the mean direction as well as on the amount 
of dispersion within the formation. In other words, the question is, what is 
the minimum number of observations which would give the mean direction 
with a specified precision for the formation, that is, a mean for which the 
confidence limits are set in advance by the geologist ? It is also important to 
have an idea about the allocation of samples, i.e., the optimum number of 
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Table 1. Value of Concentration Parameter ~o 
Required for ~'N to Attain Given Precision 

Semiangle of Confidence Concentration 
confidence, deg level, (1 -~t) value required, ro 

0.90 354.6292 
5 0.95 504.0610 

0.99 870.6682 
0.90 88.7598 

10 0.95 126.1125 
0.99 217.9236 
0.90 22.1772 

20 0.95 31.5221 
0.99 54.4496 

observations which should be collected from an exposure and how many 
such exposures should be sampled in a locality. 

The techniques used so far for hierarchical or multistage sampling of 
crossbedding foreset azimuths are based on the conventional analysis of 
variance. However, we know that the classical method of analysis of variance 
cannot be indiscriminately applied for the analysis of circularly distributed 
directional data. 

This problem has been discussed by Rao and Sengupta (1970), who have 
developed an optimum hierarchical sampling technique for crossbedding 
data, using the circular measures of dispersion and the approximate ANOVA 
for circularly distributed data (Watson, 1956, 1966). The sampling problems 
solved for the crossbedding data are (1) the minimum sample size required for 
estimating, with a desired precision, the mean direction of a formation and 
(2) the optimum allocation of samples between and within the outcrops that 
would allow etticient sampling at minimum cost. Solutions have been 
provided for estimation with the semiangles of confidence of 5, 10, and 20 ~ 
at confidence levels of 0.90, 0.95, and 0.99 for each situation (Table 1). 

The following is a summary of sampling procedures outlined by Rao 
and Sengupta (1970). The method given here will be valid for any directional 
variables used in paleocurrent work. 

(a) Before the actual sampling is undertaken, it is necessary to conduct a 
pilot survey for a small number of representative samples of the directional 
element for the formation concerned. An equal number of observations from 
each outcrop facilitates computation. The computational procedure adopted 
assumes that within the ith outcrop the observations ~,j have a circular 
normal distribution (CND) with a mean direction (~ + ~,) and a concentration 
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parameter  co. The ~,'s have a CND with mean direction zero and concentra- 
tion fl so that the overall formation mean is ?. Suppose we visited n outcrops 
and took m observations from each of  them, making a total sample of  size 
N =mn for the formation. Let ~b,j denote the jm observation from the itla 
outcrop ( j  = 1 . . . . .  m; i = 1 . . . . .  n). 

(b) Sine and cosine values are computed for each direction (~u) mea- 
sured. The length of  the resultant for each outcrop is obtained as follows: 

m 

R 2, = cos ~ u ) 2 + ( ~  sin 4h,) 2 
j = l  ~ = 1  

= c Z I + s 2  i 

where R, is the outcrop resultant for the ith outcrop, and m is the number of  
observations within each outcrop. 

(c) The overall resultant R for all outcrops is given by 

n n 

R 2 = ( Z c , ) 2 + ( E s y  
i = 1  i = 1  

where n is the number of  outcrops surveyed, and C, and S, are as defined in 
step (b). 

(d) The A N O V A  for the directional data is computed, where G) and fi, 
the estimates for within outcrop and between outcrop concentration para-  
meters, are obtained by equating columns (4) and (5) of  Table 2. 

(e) The opt imum number of  observations m* to be taken at an outcrop is 
obtained from the relation 

m* = ~/  Cl.fl/C2.l~ 

where C1 and C2 are the costs for reaching an outcrop and taking an observa- 
tion within an outcrop, respectively. The geologist should have a rough idea 
of the relative cost (C1/C2), say as 10:1 or 20:1. 

Table 2. A N O V A  Table for Circular Data 

Source of variation df SS MS E(MS) 
(1) (2) (3) (4) (5) 

l+m Between outcrops n -1  ~.R,-R (ZR,-R)/(n-1) �89 7)  
1 

n 
Within outcrops N-n N--~,R+ (N-2R~)/(N-n) 1 

2r 1 

Total N -  1 N -  R . . . . . .  
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(f) The optimum number of  outcrops to be sampled n* is given by the 
equation: 

n* = x o [ ( l / ~ )  + (l/rn.~)] 

where Ko is the concentration for a desired confidence level (1-at) and the 
semiangle of  confidence (r and is obtained from Table 1. The geologist 
should decide how much precision he needs, i.e., ~o and at what confidence 
level, and look in Table 1 for Xo. 

An illustration of  the application of  this sampling technique based on 
actual field data of  crossbedding azimuths from the Kamthi Formation near 
Bhimaram (Bheemaram), India, has been given by Rao and Sengupta (1970). 

S U M M A R I Z A T I O N  OF DATA 

This section briefly touches on methods of  obtaining summary measures for 
the data and their graphic presentation. 

Computation of Resultant Direction 

For the directional data circularly distributed on a compass dial on either side 
of  true north (360~ it is obvious that the usual method of  arithmetic averag- 
ing leads to erroneous conclusions (e.g., arithmetic mean of 20 ~ and 340 ~ is 
180~ It is accepted that a meaningful measure of  average in the examples of  
these directions is given by the direction of  the vector resultant of the sample, 
treating each observation as a unit vector with components cos at,, sin at,. 
That is, corresponding to the sample at, . . . .  , at, we compute 

V = ~ c o s a t ,  W = ~ s i n a t ,  
1 I 

and take 
= tan -1 (W]V) 

as the sample mean direction. Where grouping of  data cannot be avoided, we 
compute the mean direction in a similar fashion, i.e., compute 

g = n, cos  x~ IV = ~ n, sin x, 
i ~ l  i = 1  

= tan -1 (IV/V) 

where x, is the midpoint azimuth of the i th class interval, n, is the number of  
observations in the i th class, and ~ is the azimuth of  the resultant vector. The 
quadrant in which this ~ lies is determined by the signs of  V and IV. We also 
may mention that grouping of  data should be avoided wherever possible. 
One can then draw better conclusions as the ungrouped data are more precise. 
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Computation of Dispersion 

Because the usual measure of dispersion, e.g., the standard deviation is not 
applicable to directional data, an alternative measure of dispersion is re- 
quired. Variability or scatter within a sector is represented by the magnitude 

of length of the resultant vector R, where R = ~ V 2. A useful measure 
of concentration of azimuths is the consistency ratio (R/n of Reiche, 1938, 
p. 913), expressed in terms of percent, i.e., L = (R/n)x 100. L has been 
termed "vector magnitude" by Curray (1956) and "vector strength" by 
Pincus (1956). Equivalently (for distributions which are unimodal), the 
quantity (n-R) provides an excellent measure of dispersion of the sample 
directions; this is large if the observations are widely scattered and small 
if they are consistent. 

Graphical Presentation of Data 

The observed directions within an area can be graphically represented in the 
form of a rose diagram (a circular histogram). The resultant direction 
(vector resultant) is usually represented by an arrow at the center of the 
diagram, and the length of the arrow is made proportional to the vector 
strength. The two-dimensional moving-average method of representation of 
vector resultant directions of crossbedding has been used by Potter (1955) 
and Pelletier (1958). Moving averages emphasize the major trends of sediment 
transport by smoothing the local variations. This method has been recom- 
mended by Potter and Pettijohn (1963, p. 274), who also have suggested 
different types of maps for presentation of directional data. 

SIMPLE TEST FOR UNIFORMITY 

Testing uniformity or lack of a preferred direction in the observed data is an 
important first step in analyzing the directional data. If  there is no signifi- 
cantly preferred direction, there is little use in computing the mean direction, 
or in any further tests on such a mean direction. Several tests for uniformity 
are available and a discussion of these tests along with a comparison of their 
large-sample efficiencies may be found in Rao (1969, in press). A simple 
test for uniformity which is useful for moderate-sample sizes, has been intro- 
duced by the senior author and is described here. 

Suppose al . . . . .  ct, are n directions in two dimensions measured say in 
angles from 0 to 360 ~ If these observations are symmetrically scattered around 
the circumference of the circle, i.e., equispaced on the circumference, this can 
be considered as evidence in favor of uniformity. On the other hand, if these 
observations tend to cluster in one or more directions, this may be considered 
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as evidence in favor of  a preferred direction (or directions). Using this simple 
idea, we will construct a test of  uniformity based on the sample arc lengths 
i.e., the distances between the successive observations on the circumference, 
say T1 . . . .  , T,. The n observations clearly divide the circumference into n 
arcs; let T ~ , . . . . ,  T, be the lengths of  these n arcs. These sample arc lengths 
T 1 , . . . ,  T, are easy to compute. Let the observations ~ q , . . . ,  ct, be numeri- 
cally arranged, and let us call the smallest of  the lot art* , the second smallest 
�9 2", etc., and the largest atn*. The arc lengths are given by 

T1 = ~ 2 * - - a t 1 * ,  T2  = ~ 3 " - ~ 2  :r . . . .  , T,, = ~t*--"nn*+360 

It is simple to understand this (especially the definition of  T,), if the observa- 
tions are represented as points on the circumference of  a unit circle. 

Under the uniformity hypothesis, the expected length of  an arc is 
(360/n) ~ because there are n observations to the 360 ~ of  the circumference. 
The test consists in comparing each of  the observed arc lengths 7"1 . . . . .  T, 
with (360/n). The proposed test statistic which is one such measure of  dis- 
crepancy between (TI . . . . .  T,) and (360/n) is half the sum of absolute deriva- 
tions 

u. = �89 [T,-(360/n)[ 
i=1 

= � 8 9  + . . .  + [Z,,-(360/n)l] 
Clearly from what we said earlier, smaller values of  U~ indicate agreement 
with the hypothesis of  uniformity or lack of  preferred direction. On the other 
hand, if U, is too large as indicated by the table of  critical points, there is 
reason to reject the hypothesis of  uniformity and conclude that there is 
indeed a preferred direction. Under the hypothesis of  uniformity the density 
function of  Un, sayf,(u), is given in Rao (1969): 

n--I  

f~(u) = (n-- 1)! ~ (.i")(u/2n) " - i - I  {~(nu)/[(n--j-- 1)! nJ-1]} 
jr1 

for 0<~u~< 2nil --(I/n)] 
= 0 otherwise 

where ~ ( x )  is the density function of  the sum of j independent uniform 
random variables on [0, 2n] and has the expression 

r = [1 /2n ' ( j -  1)!] '~, ( -  1)kG, j) ( ( x / 2 r 0 - k )  s-x 
k ~ 0  

with the notation (x )  = x if x > 0  and (x )  = 0 if x~<0. The following table 
(Table 3) gives the critical points of  U. for sample sizes n = 2(1)20 and for 
three levels of  significance = = 0.01, 0.05, and 0.10. If  for a given sample size 
n and level at, the calculated value of  U. exceeds the tabulated critical point 
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Table 3. Critical points Uo(~,n) (in 
Degrees) for Statistics U. 

nX,• 0.01 0.05 0.10 

2 178.20 171.00 162.00 
3 219.24 193.68 174.24 
4 221.04 186.48 171.72 
5 212.04 183.60 168.84 
6 206.04 180.72 166.32 
7 202.68 177.84 164.88 
8 198.36 175.68 163.44 
9 195.12 173.52 162.36 

10 192.24 172.08 161.28 
11 189.72 170.28 160.20 
12 187.56 169.20 159.48 
13 185.76 167.76 158.40 
14 183.96 166.68 157.68 
15 182.16 165.60 156.96 
16 180.72 164.88 156.60 
17 179.64 164.16 155.88 
18 178.20 163.08 155.16 
19 177.12 162.36 154.80 
20 176.04 161.64 154.44 

Uo(~,n), we reject the hypothesis of  uniformity.  The critical points  have been 
given in  terms of  degrees for ready applicability. 

Example: we give here an  example of  the following crossbedding 
azimuths that  were observed in a par t icular  outcrop as 20, 35, 350, 120, 85, 
345, 80, 320, 280, and  85 ~ . 

I t  is required to know whether these azimuths indicate a preferred 
direct ion of  paleocurrent .  The arc lengths {T, } made by these observat ions 
on  the circle are easily seen to be 15, 45, 5, 0, 35, 160, 40, 25, 5, and  30 ~ and  
the fixed arcs are of  length 360/10 = 36 ~ in this example. Therefore 

10 

U~o --(�89 I 
i = 1  

= 137 ~ 

This value of  137 ~ for n = 10, is no t  significant even at  the 10-percent level 
of  significance as the critical poin t  in this example is only 161.28 ~ . Therefore, 
we conclude that  the observat ions could have come f rom a un i fo rm distr ibu-  
t ion.  
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TESTS FOR HOMOGENEITY OF DIRECTIONAL DATA 

The problem of comparison of directional data belonging to two or more 
populations has led to many interesting discussions, because Student's t and 
similar conventional tests are not valid for data having circular distribution 
(Court, 1952; Potter and Pettijohn, 1963; Krumbein and Graybill, 1965; 
Watson, 1966). A standard test for comparing the mean directions of several 
circular normal populations with the same concentration parameter, can be 
constructed from Table 1 (see, for instance, Watson, 1966). The statistic 

n 

F =  [(~_R,--R)/(N--ER,) ] [(N-n)/(n-1)] 
1 1 

which follows an F distribution with (n -1 )  and (N-n) degrees of freedom, 
tests the equality of mean directions of the n populations. 

A problem of this type, originating from actual field data, was presented 
by Sengupta and Rao (1966) and Sengupta (1970). The existing tests for 
directional data were found unsuitable for comparison of the crossbedding 
foreset dip directions belonging to three different members of the Kamthi 
Formation near Bhimaram because the observations showed a wide diver- 
gence from circular normality and also the three formations had significantly 
different concentrations. We wished to know if the crossbedding dip direc- 
tions observed in the three different members (lower, middle, and upper) of 
the fluviatile Kamthi Formation belong to three significantly different 
populations. In other words, did the direction of sediment transport signi- 
ficantly change with time during Kamthi sedimentation ? Visual comparison 
of the data was not enough, because the shift in the resultant directions of the 
three members was small, and spreads of the total data of crossbedding 
azimuths for the three Kamthi members were overlapping. 

Two large sample homogeneity tests or H tests were proposed by the 
senior author for testing the equality of polar directions and the equality of 
dispersions of the directional data (Rao, in Sengupta and Rao, 1966; Rao, 
1969). These tests do not assume any specific circular normal distribution for 
the observations and are generally valid provided the samples are not too 
small. Besides, the large sample test for equality of mean directions can be 
applied although the populations have different concentrations. Through 
further studies, the large-sample efficiency of Rao's H test for testing equality 
of mean directions was shown to be equal to Watson's F test; if both the 
tests can be applied for a given data. Efficiencies of some of the existing tests 
for uniformity also have been analyzed and compared (Rao, 1969). The 
practical procedures for applying the homogeneity tests in the example of 
paleocurrent (e.g., crossbedding) data are given. Reference may be made to 
Rao (1969) for detailed discussions of the theory of these tests and for other 
statistical methods developed by him. 
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TEST FOR EQUALITY OF MEAN DIRECTIONS (POLAR VECTORS) 

Suppose our problem is to test for equality of  polar vectors of  k populations 
of  angular variables (e.g., crossbedding azimuths). Suppose a sample of  size 
n, is taken from the i th population. Let q~,j stand for the j  th observation in the 
i th sample (j = 1 . . . . .  n,; i = 1 . . . . .  k). Let us denote the cosine and sine 
components of  q~ by x,j and y,~, i.e., x,~ = cos ~,j and y,j = sin q~,j. The 
following steps describe the test. (a) Sine and cosine values (x,j and y,~) are 
computed for each direction ~,j measured. 

(b) The means of cosine vatues and sine values are computed for the ith 
sample. Let x, and y, denote the means of  cosine values and sine values, 
respectively, for the sample of  size n, from the i th population, i.e., 

n t n t 

x, = E x , ] n ,  y, = Ey , , / n ,  
j = 1  j = l  

(c) The sample variances of  the cosine and sine values [S(cci) and S(ssi), 
respectively], and the sample covariance between the cosine and sine values 
[S(csi)] from the ith sample are computed as follows: 

n l 

S(cci) = ~ (x ,~-x,)E/(n,  - 1) 
j=l 

n~ 

S(ssi) = ~. ( y , j - y , ) 2 / ( n , -  1) 
i = l  

nl 

S(cs) = ~ (x , , - x , )  ( y , j - y , ) / ( n , -  1) 
)=l 

(d) Let the population mean direction in the i th population be represented 
by ?,. Then a consistent estimator of  tan ~,, is given by 

T, = y, /x ,  

(e) The estimated variance of  T,, say Si 2, is given by 

I f S s s  (0 yl = Scc '0 2y~_ S_cs(O~ 
s'2 =  l-77-, x," x? 

(f) Let us consider the hypothesis 

Ho: tan 71 = tan ~'2 = �9 �9 �9 = tan ~'k 

The following H statistic (see Rao, 1965) can be used to test the hypo- 
thesis Ho or equivalently the homogeneity of  the T values. Compute 

_ _  T, \ 2 ) / / k  
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(g) Under some general conditions this statistic H has a chi-square 
distribution with ( k -  1) degrees of freedom, when the hypothesis H o is true. 
A significant value of H would lead to the rejection of the hypothesis Ho, 
and we may conclude that the polar vectors are different. A simple remark is 
in order. Because tan I' = tan (n+1'), the hypothesis H0, as stated, does not 
distinguish between pole and the antipole. But this is not a drawback of the 
technique because wide differences in polar vectors can easily be determined 
by a simple examination of the data. 

TEST FOR EQUALITY OF DISPERSIONS 

The following procedure is adopted for testing the equality of dispersions of 
k populations of angular variates. As before let x, and y, denote the means of 
cosine and sine values of the i th sample, respectively, and let Scc(i), Sss(i), 
and Scs(i) denote the sample variances and covariance of the cosine and sine 
values. 

(a) A measure of concentration (that is, the reciprocal of dispersion) for 
t h e  i th population is given by 

U l = x i 2 + y i  2 

(b) The asymptotic estimated variance of U, is obtained as follows: 

Si*2 = 4/n, {xi2Scc (i) +yi2 Sss(i) + 2x,  .y,  Scs (0 } 

(c) The homogeneity test may be used again to test the homogeneity of 
U1, /-/2 . . . .  , U, or, in other words, the hypothesis that the concentrations in 
the k populations are equal. Compute 

n I~ Ui'~-z U'2~2~/(kl "~ 

H is distributed as Z 2 with ( k -  1) degrees of freedom under the hypothesis of 
equality of dispersions. 

(d) A significant value of H would lead to the rejection of the hypothesis 
and would lead to the conclusion that the concentrations (or, equivalently, 
dispersions) in the various populations are different. 

Example: in the illustration given by Sengupta and Rao (1966), the 
statistic H, if computed separately for T and U values of the crossbedding 
azimuths from three different members of the Kamthi Formation, gave 
significant results in both examples showing that the population direction of 
crossbeddings as well as their dispersions are significantly different in the 
three Kamthi units. This led to the conclusion that despite repeated oscilla- 
tions and many local changes in flow direction, the shift in the direction of 
sedimentation with time in the Kamthi river was a significant one. 
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